skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCarter, Margaret R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Artificial spin ice, arrays of strongly interacting nanomagnets, are complex magnetic systems with many emergent properties, rich microstate spaces, intrinsic physical memory, high-frequency dynamics in the GHz range, and compatibility with a broad range of measurement approaches. This Tutorial article aims to provide the foundational knowledge needed to understand, design, develop, and improve the dynamic properties of artificial spin ice. Special emphasis is placed on introducing the theory of micromagnetics, which describes the complex dynamics within these systems, along with their design, fabrication methods, and standard measurement and control techniques. The article begins with a review of the historical background, introducing the underlying physical phenomena and interactions that govern artificial spin ice. We then explore the standard experimental techniques used to prepare the microstate space of the nanomagnetic array and to characterize magnetization dynamics, both in artificial spin ice and more broadly in ferromagnetic materials. Finally, we introduce the basics of neuromorphic computing applied to the case of artificial spin ice systems with a goal to help researchers new to the field grasp these exciting new developments. 
    more » « less
    Free, publicly-accessible full text available August 14, 2026
  2. null (Ed.)